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As the radio frequency spectrum becomes increasingly overcrowded, interference with
mission-critical DSN operations is rising at an alarming rate. To alleviate this problem the
DSN is developing a wideband surveillance system for on-site detection and identification
of potential sources of radio frequency interference (RFI), which will complement the
existing frequency coordination activities. The RFI monitoring system is based on a
wideband, multi-look discrete spectrum analyzer operating on fast Fourier transform
principles. This article presents an extensive general statistical analysis of such spectrum
analyzers and derives threshold detection performance formulas for signals of interest.
These results are then applied to the design of the RFI spectrum analyzer under

development.

l. Introduction

Due to the steady increase of commercial and military users
of the radio frequency (RF) spectrum, deep space telemetry
and tracking can no longer expect to have dedicated, interfer-
ence-free bands available all the time. DSN operations are
particularly vulnerable to radio frequency interference (RFI)
because of the relatively weak signals received from deep space
probes. The magnitude of this problem was addressed in part
by an earlier article (Ref. 1), which demonstrated the potential
for an alarming number of outages in DSN reception due to
RFI from a rapidly growing contingent of powerful Earth-
orbiting satellites.

To alleviate this problem, the DSN is developing equipment
to provide continuous, real-time surveillance of the RF envi-
ronment at each complex. This monitoring system will func-

tion independent of existing DSS receivers and antennas so as
to avoid interrupting normal DSN operations. By detecting
and identifying potential sources of RFI in advance, and using
available frequency coordination procedures, the loss of
mission-critical data can be minimized.

The heart of the RFI monitoring system under develop-
ment is a wideband (10-20 MHz at S-band), high-resolution
(217, or about 130,000 spectral lines), digital spectrum analy-
zer, using fast Fourier transform (FFT) processing for real-
time operation. This article determines the statistical perfor-
mance of discrete spectrum analyzers corrupted by additive
Gaussian noise, and applies the resulting formulas to the design
of the RFI surveillance system.

Much of the detailed mathematical analysis is confined to a
series of appendices. A general expression for the power in a
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given spectral line is derived in Appendix A for a discrete
Fourier transform (DFT) spectrum analyzer. (The FFT is
simply a computationally efficient method of implementing a
DFT). This is followed by an examination of the statistical
characteristics of the spectral line powers for an ‘“‘L-look”
analyzer (in which the output powers are averages of L inde-
pendent measurements), and the derivation of system perfor-
mance probabilities for threshold signal-detection processing.
In Appendix B, this is done for continuous spectrum bandpass
Gaussian signals, while Appendix C looks at discrete spectrum
signals imbedded in white Gaussian noise. Finally, Appendix D
discusses aliasing effects in the DFT spectrum resulting from
the finite observation window for the input signal.

Il. Application to RFI Spectrum Analyzer
Design

In this section, we will use some of the statistical perfor-
mance formulas derived in the appendices to compute some
preliminary design parameters for the RFI spectrum analyzer.
This is an L-look, FFT-based system which produces an
N=2" line spectrum of total bandwidth W= 10 MHz (base-
line design), so that the line width is W/N =763 Hz. The
system internal noise temperature is assumed to be 30K in
this exercise, corresponding to a thermal noise power spectral
density NV, =-183.83 dBm/Hz.

For RFI applications, most of the time the spectrum analy-
zer will see only its own thermal noise. In this case, Appen-
dix B shows that each of the normalized spectral line powers is
a central chi-square random variable with 2L degrees of free-
dom, mean 1, and standard deviation l/\/z (see Eq. B-16 with
signal-to-noise ratio y=0). If a threshold n>1 is used to
detect the presence of an external signal component at each
line frequency, the false alarm probability per line P, is
given by Eq.(B-21). Since it requires 7, seconds (see
Eq. B-12) to generate one entire spectrum, the probability of a
false alarm on any line during 24 hours of continuous opera-
tion, P 4 ¥, is overbounded by

(24 X 60 X 60)N
Ppy* < 7 Py

L

0]

L
 B6400W [ge=(1 ]
V2aL [(p-1) L + 1]

which is accurate for small Pr 4 * (union bound argument) and
(-DA/L = 4 (see Fig. B-3).! For reliable RFI surveillance on

"Note that the threshold is (n-1) \/[_ standard deviations beyond the
mean normalized spectral line power in the noise-only case.
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a round-the-clock basis, we will arbitrarily set a baseline design
requirement that Pp ,* =1073. The variation of L and T
with 1 subject to this constraint is illustrated in Fig. 1; note
that (n-1) /L varies slowly over the range of 4 shown.

Occasionally, the RFI spectrum analyzer will receive an
external signal of interest. The Consultative Committee for
International Radio (CCIR) Recommendation 365-2 states
that the interference from any RFI source, measured at the
input to a DSN receiver, shall not exceed ~190 dBm/Hz
(7.25 K) for more than 5 minutes each day. As in our first RFI
article (Ref. 1), we shall assume that this power spectral den-
sity is the minimum RFI level of interest, and design the
spectrum analyzer to detect signals down to this level.

The interference signal spectrum can have many forms.
Suppose the sidebands from a wideband (e.g., spread-
spectrum) transmission lie in the DSN receive band. Then the
RFI signal might look like white Gaussian noise, with one-
sided power spectral density N(; over the spectrum analyzer
bandwidth W. This situation is considered in Appendix B. The
probability P, that a given spectral line power lies below the
detection threshold 7, referred to as a “miss,” is accurately
approximated by Eq. (B-20) for large L. The tradeoff between
Py oand Pp,* vs 7 is illustrated in Fig. 2 for L =2100 and
N(; = ~190 dBm/Hz. If we select for our baseline design the
balanced performance requirement Py, = P, * = 1073, this is
satisfied for the above N (; by the system parameters

L=2091andn-1=0.1587

% )

T, =274sand (n- DL =726

For this design, the sensitivity of P, to changes in N, is
shown in Fig. 3 (P * remains constant at 1073, of course,
independent of N).

On the other hand, the interfering source might transmit a
discrete, higher-order carrier or subcarrier harmonic compo-
nent that falls into the DSN receive band. For example,
suppose the RFI signal is a single sinusoid of power P at
some frequency f;, where f; is a priori uniformly distributed
over the spectrum analyzer bandwidth W. This is a special case
of the M-sinusoid analysis in Appendix C. Consider the spec-
tral line nearest in frequency to f, and denote this frequency
separation by A: then A is uniformly distributed over (- W/2N,
W/2N). To properly detect the RFI signal, we want this
particular spectral line power to be above the threshold 7.
Conditioned on A, the probability of this not occurring (a



miss) is given by Eqs. (C-19) and (C-20), and (see Eq. C-17
with M= 1)

; 2
N = PN sin NA 3)
k NW/J\N sinA
Averaging over 4, the probability of a miss on this particular
line is
w
w K
= g, (%)
PM'W/ dAj dxe k 4)
0 0

where g, (x) is defined by Eqs. (3) and (C-20). Since Ny W/N =
~171.2 dBm for the design point N previously used, we will
plan on a minimum detectable P in this vicinity. Thus, for P =
-170 dBm and T, = 65.0 s, the tradeoff between P,, and
Pp,* as q is varied is shown in Fig. 4. To ensure that Py, =
Ppy* =1073 for this P, we need

TL =64.0sand n-1=0.1003

7 )

L =4883 and (y-1)v/L =701

The corresponding sensitivity of P, to changes in P is illus-
trated in Fig. 5.

The design parameters of Eq. (5) represent a good baseline
to cover both types of RFI signals above with their corre-
sponding minimum detectable levels. When this selection is
made, and the white noise-like RFI signals with N(') = -190
dBm/Hz is present, Eq. (B-20) yields P,, = 7.03 X 10717,
while Py, * remains at 103,

lil. Conclusions

This article presented an extensive statistical analysis of a
multi-look discrete spectrum analyzer based on DFT or FFT
techniques. We demonstrated that the output spectral line
powers are central or noncentral chi-square random variables
with many degrees of freedom for continuous spectrum Gaus-
sian signals or discrete spectrum sinusoidal components
imbedded in internal Gaussian noise. We derived threshold
detection probabilities for these signals, and determined accur-
ate simple approximations for these probabilities.

These results were applied to the design of a 10 MHz, 217
line FFT spectrum analyzer with a 30 K internal noise temper-
ature, which forms the basis for an RFI surveillance system
under development for the DSN. It was shown that reliable
performance down to required signal detection levels can be
achieved with an approximately 5000-look system, a spectrum
generation time of about a minute, and a detection threshold
placed 7 standard deviations beyond the mean, noise-only
spectral line power.
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Fig. 1. Variation of number of looks L and spectrum generation
time T, with threshold 7 for W = 10 MHz DFT spectrum analyzer,
subject to constraint that false alarm probability P.,* during 24
hours of continuous operation be 10 -3
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Fig. 2. Tradeoff between probability of false alarm per day LN
and probability of a miss P, vs threshold » for 2100-look system
with spectrally white external Gaussian signal of power spectral
density N, = —190 dBm/Hz imbedded in internal thermal noise
of power spectral density N, = —183.83 dBm/Hz (30 K noise
temperature)
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Appendix A

Derivation of DFT Power Spectrum for Bandpass Signals

Consider a deterministic signal x(f) with bandwidth W
centered at f . Based on the observation of x(¢) over [0,T], we
want to measure its power spectrum using DFT techniques.

First, x(#) is reduced in quadrature to baseband, using a
lowpass filter (LPF) to eliminate components near ZfC:

y(6)=x (1) V2 cas 2nf t LPF

(A-1)
2 =x(t) V2 sin 2nf t

LPF

In the frequency domain, the corresponding Fourier transform
relations are

V() = = X ()4 X (7))

V2 LPF
(A2)
20 = —= X ) X(f+fc)]‘LPF

Solving for X(f+f.), we have

X(H,) = f[Y(f% ZOl <L (g

To apply the DFT approach to the determination of Y(f)
and Z(f), it is convenient to introduce some shorthand
notation:

_ m
ym :y (W)
m=0,1,....N-1:N=WT
_ [ m
Zm :Z<W>
_ (kW
Yk:Y<N> N N N
/&5—.—2—,*—54'1,...,—2'* 1, foreven N
_ kW
Zy =2 (“N") (A4)
_ 2nkm\
Crem =cos< N )
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Then, for sufficiently large T (or equivalently, V), we have the
approximation

N-1

T
; 1
~ —2TkWt/N ~ _
Yk_f dty(t)e =7 2 ym(ckm ]dk”)
0

m=0

(A-5)

and Z,_ is expressed similarly. Therefore

( kW 1
X f+—)5‘—‘—z W, ~ iz, )y, ~Td, )
c N W\/_2— e m m m m
_ N A -iB) (A-6)
- -]
NI k
where
e
A, =N Z O nCom ™ Zm%em)
m=0
(A-7)
| A=
B, =% O mem * 2 Cm)
m=0

The one-sided power spectral density of x(f) is approxi-
mated by

2 2
S,() = ‘ X() ’ (a8)

It follows that the kth discrete power spectral component,
which approximates the power in x(¢) with a bandwidth W/N
centered at frequency f,, + kW/N,? can be expressed as

w L EWY o 2 =
—Z\TSX(]C+—]-V—):AR+BkmSk (A-9)

Although Eq. (A-9) was derived for deterministic signals
x(t), the DFT spectrum approach is readily extended to ran-
dom signals, except that S, is now a random variable, some-
times called a periodogram (Ref. 3).

2Actually, the finite observation time 7 causes some spectral spreading
(see Appendix D), which can be reduced by appropriate data sample
“windowing” (e.g., Refs. 2, 3).



Appendix B

DFT Power Spectrum Statistics for Continuous Spectrum Gaussian Signals

Suppose that x(¢) in Appendix A consists of a zero mean,
bandpass, spectrally nonwhite Gaussian signal, plus zero mean,
bandpass, white Gaussian noise:

x(#)=x (1) V2 cos 2af 1+ xs(t) V2 sin 2nft  (B-1)

where x.(¢) and x (¢) are lowpass signal-plus-noise quadrature
components, each with one-sided bandwidth W/2. If the one-
sided power spectral density of x(¢) is S (f), then the auto-
and crosscorrelation functions of x,(#) and x(f) can be
expressed as (Ref. 4, pp. 498-501):

Rc (r) = X, (t+7) X (1) =Rs (n
(B-2)
W
=f df s, (f) cos 2nfr
0
and
R, (r) = x, (t47)x (t) = R, (-7) = R, (r)
(B-3)

W
2

)

where S (f)and S(f)are the even and odd parts of S, (f+f,)
about = 0 (see Fig. B-1):

afs, (f) sin 2nf71

S, ()= 3 1S, (F+) + S, (-£+£,)]
(B-4)
Sy (V=% [, (F+1) 45, (F+£)]

Now, to determine the spectral line statistics, we first note
that the lowpass quadrature components of Eq. (A-1) are
simply

y(t)=x (1) A1) =x(t) (B-5)

Since x (¢} and x(f) are zero mean, jointly Gaussian random
processes, the spectral components 4, and B, of Eq. (A-7)
must be zero mean, jointly Gaussian random wvariables.
Furthermore,

r %) R (%)
. 1 N-1 N-1 o~ o g
o . —
A = j; Z Z Yo CxmCii ¥ ZmZBkmu;
m=0 j=
m-j j-m
R, (%) R )
r—"
- ymzjckm kj N y]chk/ km
R LS i m-j
= — —_— o) 7
N2Z Rc(w>cosh7rk<N)
m=0 j=0

Lo m-j m-i
AkBk = ;2- ZO: —Rc (——w— sin 27k (——]—V——)
=

o 1, (1) s (."JN_J)J 0

The summation in Eq. (B-7) is zero since R, [(m~j)/W] and
cos 2mk [(m-j)/N] are even functions of m-j, while R
[(m-)/W] and sin 2rk [(m-])/N] are odd. So 4, and B, are

(B-7)
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independent and identically distributed. Consequently, for a
single-look system, the power spectral components S, , defined
in Eq. (A-9), are central chi-square random variables with
2 degrees of freedom, and mean

S, =242

X (B-8)

Let us now specialize to the case where the input Gaussian
signal is white, with one-sided power spectral density N('). If
the additive noise is independent of the input signal, and has
spectral density N, over the bandpass region of interest, we
have

) %
S, () =8 (ftf) = Ny+N; 0<f< B3
(B-9)

S, () =0, Vf

Then Eqs. (B-2) and (B-3) yield

_ (NO + N('))W
- 2 5i0
(B-10)

; W, +N')W( in mi
iy _ Yo 0 sin 71
R, (w) N 2 i

A .
R (57) =0, Vi
and Egs. (B-6) and (B-8) reduce to

—_— , W
S, =Wy +Ng) 77> Vk (B-11)

where W/N is the bandwidth of a spectral line.

For an L-look DFT spectrum analyzer, the k™ spectral
component S¥ is the average of L independent samples of Sy,
which preserves the mean and reduces the variance by 1/L. If
the L measurements are made sequentially, the total observa-
tion time is (see Eq. A-4)

T'=LT=LN

T = (B-12)

For convenience, we will scale the entire spectrum by
(Vo W/N)~1, so that the mean spectral line power is 1 in the
absence of an input signal:
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(B-13)

Then the normalized spectral line power v, is a central chi-
square random variable with 2L degrees of freedom; its prob-
ability density function is (Ref. 5)

ka
1 (L \e oo, -
PO = 7D (1+7) e Uy >0 (B14)

where we have introduced the signal-to-noise ratio

_ Ny
Y = N, (B-15)
and
Ve 1+%
(B-16)
_ 1ty

In this particular case, the input signal spectrum is flat, so
the v,’s all have the same mean. However, in géneral, we
detect the presence of a signal component at each frequency
f. + kW/N by comparing v, with a threshold 7. The selection
of 7 involves a tradeoff between the probability of incorrectly
deciding a signal is not present (a “miss”), vs the probability of
falsely detecting a signal (a “false alarm™): a smaller g
improves the former at the expense of the latter.

The probability of a miss at the Xt frequency is given by
(using Ref. 6, pp. 317 and 940)

1L Lty
= L7 L-1 L
Py =P, <n] 03 dxx* e
0
AL e (—L)l
1ty Z li+'7 . Vk (B-17)

To ensure an acceptable balance between the miss and false
alarm error rates, we select an 4 in the range (1,1+y). There-
fore the terms in the summation of Eq. (B-17) decrease mono-



tonically with i over the range i > L, suggesting the expansion
(similar to Ref, 7):

2
(lnfy )

(L+1) (L +2)

()

I+L+1

1 __+_ L <= i
<ge (%) 3 [(m)(Lﬂ)J

i=0

= (B-18)

The upperbound in Eq. (B-18) becomes tight for large values
of L, as will be shown later for a similar upperbound to the
false alarm probability. Furthermore, L! is bounded by
(Ref. 8, p. 257):

1

VarL (Lje)t < L! < 2L (Lje)t 1L (B.19)

and the lowerbound on L! (called Stirling’s approximation) is
also accurate for large L (e.g., within 1% for L > 8, and 0.1%
for L > 83). Combining Egs. (B-18) and (B-19) yields the

useful approximation
1-—2 -
( n > e 1+
ty

VL [ (1+7)<L+1)]

(B-20)

The false alarm probability for a given spectral line is
similarly expressed as

Poy =P Iy,

e >qly=0] =™

[ne=(n-1] *

T DL+l ok

(B-21)

Another common approach to approximating the false
alarm rate for large L is based on the central limit theorem
(CLT):

_L(vk—l)
P v=0 = [ie P @
\
Ppy = 0[@-1 VL] (B23)
where
2
_ 1 T
0@ = (B-24)

is the Gaussian error function (Ref. 4, pp. 82-83). Note that
(1) /L is (1-v,)/ oy, conditioned on y = 0; the larger this
parameter is, the further the threshold 7 is into the tail of
p(vily = 0). Since the CLT approximation is only accurate
near the mean, Eq. (B-23) is only useful for small (n-1) /L.
Also, since the Gaussian probability distribution tail dies faster
than the actual chi-square tail, the CLT false alarm approxima-
tion is actually a lowerbound, except for very small values of
(m-1) /L. These comments are reinforced quantitatively in
Fig. B-2.

The two false alarm approximations are compared in Fig.
B-3. We see that Eq. (B-21) is accurate for (n-1) /L > 4
independent of L itself, while Eq. (B-23) is only valid for
(n-1) /I < 2 and very large L 5 1000.
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Appendix C

DFT Power Spectrum Statistics for Discrete Spectrum Signals

Now let x(t) consist of a sum of M sinusoidal components,
with the /™ one having power P;, frequency fie [f, ~(W/2),
[, + (W/2)], and phase 6, plus bandpass, white Gaussian noise:

M
x(t) = Z V2P, sin (2nf; t +0;)
=1

(C-1)
+ V2 [n,(t) cos 2af, t +ng (¢) sin 2nf,t]

The lowpass noise terms n,(f) and n(r) are independent, zero
mean, jointly Gaussian random processes (Ref. 4, Eq. 7.28),
each with one-sided power spectral density NV, over 0 < f<
(W/2), and autocorrelation function

R, (1) =

M (sin aWr ) (€-2)

2 TWr

The lowpass quadrature components of x(¢) are (see eq.
A-1):

M
vy = > NP sin2n(f-f)i+0,] +n (1)
i=1
(C-3)
M
z (1) = Z \/P_l.cos Rn(f;-f)t+6,] +ns([)

i=1

Combining the notation of Eq. (A-4) with the following
parameters,

= (ﬂ) = (L”_)
Bem = M. W Tom = 7 W
- T, kW
Atk = W(fi‘fc_W)’ lAzkl <m
| N-1
C, = v Z cos (2mAik)
m=0
(C-4)
1 N-1
= N E sin (’_’mAik)
m=0
1 N-~-1
Fk = N Z (ncm Ckm sm km)
m=0
| N—1
Gk = N (n(rm dkm nsm Ckm)
m=0

Eq. (A-7) reduces to

M
. 2 VP, (C, sin0,+D, cosd)+F,

i=1

o
l

(C-5)

o
1

M
i E VP, (Cl,k cos .- D, sin 0;') +G,
i=1

Consider the random variables F, and G,. Since
R, (m/W)=0 for m #0, the n_,’s and ng,,’s are independent;
they are also zero mean, jointly Gaussian random variables,
with variance R, (0) = N W/2. Because F, and G, are linear
combinations of the n,,,’s and n, ’s, they are zero mean and
jointly Gaussian. Furthermore,

N_ W
° s
2 mn 0
. “— —
* nsm nsn dkm dkn N ncm nsn Ckm dkn
0
——
- nsm ncn dkm Ckn)
1
i AN
NOW N—1 , R N0
- ( ¢, +dkm) - (o)
m=0
Similarly, we can show that
-2 N W
G: _ o — _
K=y F.G =0 (C-7)

so that £, and G are independent and identically distributed.
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Now conditioned on {P,f,0,},A4, and B, are independent,
jointly Gaussian random variables, with identical variances, but
different, nonzero means in general. Therefore, the power
spectral component S, of Eq. (A-9) is conditionally a noncen-
tral chi-square random variable with 2 degrees of freedom, and
conditional mean

(-8

where

M M
= Z Z ‘/Pin (Cy G D, D )cos(@i—ej)
=1

i=1

+(Cy Dy = Dy G sin (8- 6))] (C-9)

Generally, the P’s and f;’s are fixed but unknown param-
eters to be resolved by the spectrum analyzer. However, the
6s depend on the observation period, and can be regarded as
independent, uniformly distributed random variables. So,
while the mean spectral line power conditioned on {§;} con-
tains cross terms (i.e., i #; in Eq. C-9), the unconditional mean
does not:

(C-10)

ij
e e

M M
= Z E \/?ﬁ,‘ [(Cik C].k + Dik Dl.k) cos (Gi - 0]')

0

——— "e—

+(Cyy Dy~ Dy G )sin (6, - 6))]

M M sin VA, \ 2
- 2 : 2 2 E
- Pi (Cik * Dik) P, <N sin A )
i=1

=1
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(C-11)

The last step in Eq. (C-11) follows from the series identifies
(Ref. 6, p. 30)

sin VA, cos (N - 1) A,

C"k - Nsin Aik
(C-12)
sin VA, sin (V- 1) A,
Dl'k B N sin Aik

We also note that the unconditional probability density func-
tion of §,_ has the form (Ref. 5)

0,1
NSy Nug
__N_ NW TWNw p)| p—
Sy NOWe € Iy (Now Sk”‘k)
(C-13)

which, in general, does not simplify to a noncentral chi-square
distribution for M > 1.

As in Appendix B, we now extend our results to an L-ook
spectrum in which the k™ spectral component S is the
average of L independent observations of S, . Furthermore, we
again use Eq. (B-13) to form the normalized discrete spectrum
{ri}. Let the phase of the ith sinusoidal input component for
the /0 look be denoted by 8;;- Conditioned on {8}, v, is a
noncentral chi-square random variable with 2L degrees of
freedom: its conditional probability density function (Ref. 5)
and mean can be expressed as

L-1
4 2 —L(v )
e

POl 9,1)=L (%‘ o QLYY

k
{6,,}
v EA (C-14)
where
M
kTN Z Z i [(CaCoe ¥ Dy Dy ) oy

=1

(D - Dy C) 8] (C-15)



and

I

=L2cos(9 -6

h

E—LI—E sin (611— 6.) (C-16)

Since the 6 ’s are independent and uniformly distributed, for
large L, we can approximate Eq. (C-16) by a;; =6 and §;; =

0: then
M sinVA, \ 2
Z ( (N smA ) (€-17)

and we can essentially remove the conditioning restriction in
Eq. (C-14). (Note that all of thése approximations become
exact for the special case M =1.)

ll?

If a threshold detection approach is used, as in Appendix B,
the false alarm probability is again given by Eq. (B-21). The
probability of a miss on the k™ line must be computed by
numerical integration techniques:

o =P v <al
LN, n L-1 J—
~Le kf dxx ? e_L"]L @LVN)
L-1 -1
— 0
A (C-18)

For large L, the Bessel function can be accurately approxi-
mated by its asymptotic formula (Ref. 8, p. 378), simplifying
the task of numerically evaluating Eq. (C-18):

n
- £, ()
PM,k:f dx e
0

(C-19)

where

g )= L3I 2n(L- g, ()]

+(L; 1) zn(%k>+(L— 1yb, (6) = L (x+,)

|
g‘
+
——
™l
t\‘
—
S ——
™I
>
=
=

a,() =

A
b, (x) =a, (x)+In [(zz—_L—l-) m%]
k

and A is given by Eq. (C-17) in terms of the P;’s and f;’s (but
independent of the 6.s).

(C-20)
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Appendix D

Aliasing Effects in DFT Power Spectrum

In Eq. (A-5), an integral over an infinite time interval is
approximated by a finite sum of NV samples of the integrand
spaced T/N = 1 /W seconds apart. Although the spacing of the
samples satisfies the Nyquist rate condition for the infinite-
duration integrand (one-sided bandwidth W/2), the finite-time
integrand has a larger bandwidth and requires a correspond-
ingly higher sampling rate. Consequently, the DFT power
spectrum typically exhibits frequency foldover and spectral
spreading effects known as “aliasing.”

To examine this effect more closely, consider a special case
of Appendix C in which the input signal x(r) is a single
sinusoid with power P and frequency f,, and neglect the
additive noise. The one-sided power spectral density S (f)
consists of a single impulse of weight P at = £, as shown in
Fig. D-1a. Using the results in Appendix C with M= 1 and
N, =0, the DFT spectrum has envelope

[ Nm ]
sin—- (-1

E(f)y =P -
stinW(]“ fsl

w

sin% (f~fs)
Y N |f‘fs| <<5

Nm .
- f) J (D-1)

and the k™" spectral line is simply
kW
S, =E (fc + Tv") (D-2)

The spectral spreading of the form (sin af/af¥ in Eq. (D-1)
is a consequence of the flat Tsecond observation “window.”
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Other windows can be used to reduce this effect (e.g., Ref.
2,3). Also, since E(f) has period W, there is some foldover in
the DFT spectrum when |f, - f,| is near W/2. These aliasing
effects are illustrated in Figs. D-1b and D-1c.

A special case is when f, - f, is precisely equal to kW/N for
some k, say k = k,. Then Eqgs. (D-1) and (D-2) yield

sinm (k- ky) 7°
S =P|l— 2| =pPs

- (D-3)
N sin=-(k - k)

Kk,
as illustrated in Fig. D-1d. So in this case only, the DFT
spectrum looks like the actual spectrum of Fig. D-1a.

Note that for any choice of f;, the total power in all of the
DFT spectral lines is exactly P. Defining = (a/W)(f, - f,),
Egs. (D-1) and (D-2) reduce to

sin (VB + kn))?

S =P | ————+ (D-4)
k km
. K
Nsin (B N)
from which it follows that
N N
7! 5!
_P 5 .2 km\ _
E Sk_;;sm NG E sin <5+N) =P
N N
= k=——
2 2
m v (D-5)
2
(Ref. 9)
sin? Vg
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Fig. D-1. Comparison of one-sided power spectral density S (f) of sinusoidal carrier
with power P at frequency f, and DFT spectral Iinesfsk fat frequencies kW/N
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